Chapters 18
Life in the Universe: Are We Alone?

* Cosmic Evolution
 * Life in the Universe
 • Are we alone?
 • Earth is the only place we know of for certain that life exists
 • 7 stages in cosmic history
 – particulate
 –
 – stellar
 – planetary
 –
 – biological
 – Cultural
 • How do we define life?
 – React to environment often healing
 –
 – Can reproduce and pass on their genetic characteristics
 • Sometimes it’s difficult to discern between what’s alive and what is not
* Life on Earth
 * Chemical Evolution
 • Early Earth was washed out by volcanism, meteors, and erosion
 • Early earth structure
 – Lots of volcanic activity with expelled gasses producing our early atmosphere
 – Eventually Earth cooled and formed water in the atmosphere and on the surface
 – A shallow lifeless sea formed
 • In 1953 scientists simulated the early Earth by creating a mixture of the materials thought to be present on Earth long ago (“primordial soup”)
 – Water, methane, carbon dioxide, and ammonia
 – They energized the mixture with electricity and produced amino acids
 – No DNA was produced and life didn’t arise from the mixture
 • Recent theories suggest life came from interstellar impacts bringing the necessary organic material
 * Biological evolution
 • Evolution from single to multi-celled organisms
 – Fossils date back to 3.5 billion years ago
 • Survival of the fittest
 • Intelligence is favored by natural selection
* Earth was violent
 • Natural radioactivity
 •
 • UV radiation
 •

* Life as we know it
 * Carbon-based life in a liquid environment
 * Alternative bio-chemistries attempt to investigate why can’t life survive in other situations without water and carbon

* Life in the solar system
 * No other environment in the solar system appears suitable for Earth-like life
 * The Moon and Mercury
 • No atmosphere
 •
 • No magnetic fields
 • Constantly bombarded by meteors
 •
 * Venus
 • Too much atmosphere
 •
 * Jovian planets
 • Too cold with no solid surface
 •
 * Dwarf planets
 • Too cold
 * Comets and asteroids
 •
 • No life expected
 * Mars
 • Once warmer and wetter
 •

* Intelligent Life in the Galaxy
 * ____________________ - statistical estimate of the probability of life elsewhere
 – # of technological intelligent civilizations now present in the galaxy = rate of star formation, averaged over the lifetime of the galaxy X fraction of stars having planetary systems X average number of habitable planets within those planetary systems X fraction of those habitable planets on which life arises X fraction of those life bearing planets on which intelligence evolves X fraction of those intelligent-life planets that develop technological society X average lifetime of a technologically competent civilization.

 • Rate of Star Formation
– An average of 10 stars per year form in our galaxy
– Value = 10

• Fraction of stars having planetary systems
 – Other stars form by condensation
 – Our Sun is not unique
 – We have observed planetary disks
 – Earth size planet would be too dim to detect
 – Only Jupiter sized have been detected
 – We believe all stars have planetary systems
 – Value = 1

• Number of habitable planets per planetary system
 – Temperature is the most important factor
 – The distance from the host star and the atmosphere determine temperature
 – ______________________ - zone around star where conditions are suitable for life to exist
 – The Hotter the star, the larger the zone
 – Venus, Earth, Mars are in our Sun’s zone
 – One in 10 planetary systems have life
 – Value = 1/10

• Fraction of habitable planets on which life arises
 – Life is inevitable given proper chemicals, suitable environment, and a long enough time period
 – Value = 1

• Fraction of life bearing planets on which intelligence arises
 – Natural selection favors intelligence
 – One species will eventually become intelligent
 – Life remained single-celled for 2.5 billion years on Earth
 – Value = 1

• Fraction of planets on which intelligent life develops and uses technology
 – Probably some species will always fill the niche of technological intelligence
 – Value = 1

• Average lifetime of a technological civilization
 – Earth has only survived in its technological state for approximately 100 years
 – How long will we be around before a catastrophe
 – Value = 1000 years

* The reliability of each term decreases with each term on right hand side
* If advanced civilizations typically survive for 1000 years, there should be 1000 of them currently in existence scattered throughout the galaxy

* The Search for Extraterrestrial Intelligence
 * Meeting our Neighbors
 • Assume technological civilization will last for 1 million years
 • Average distance between civilizations is 150 light years
 • Sending a message will take about 300 years to go and get back
• It would take 25,000 years to reach closest star (Alpha Centauri)
• Going to the closest technological civilization would take 1 million years
• Our probes have carried proof of our existence with them (________________)
• It’s assumed that most technological civilizations are more advanced than us
 – We must be cautious because advanced life may think they can take us over

* Radio Searches
 * Radio energy allows us to listen in deep space because the longwaves can travel great distances with little distortion
 • We listen passively for signals
 * Natural radio signals are variable
 * Our radio and televisions broadcast out to space
 * If we only knew the right frequency we could listen
 *
 • Water emits radiation at around 21 cm
 • Water is the building block for Earth-life
 • Interval between ______________ is the best option for our searches and this interval is called the “______________”

*

End of Chapters 18