Chapter 5.
Atmospheric Moisture

- Movement of water between and within the atmosphere and Earth
 - Water covers over 70% of the planet
 - Cycle is in balance (~41 in. yearly average)
 - Easily changes state on Earth
 - Water cycles with different processes
 - Evaporation/transpiration
 - Infiltration
 - Condensation

- Phase changes of water
 - Evaporation – liquid to gas
 - __________ – gas to liquid
 - Melting – solid to liquid
 - __________ – liquid to solid
 - Sublimation –
 - __________ – gas to solid

- During phase changes heat is absorbed or released (latent heat)

- Measures of Water Vapor Content
 - Vapor pressure -
 - Units (mb, kPa, Pa)
 - Affected by temperature and density
 - Higher temperature or density results in higher pressure
 - Density is the larger factor
 - Saturation vapor pressure - maximum water vapor pressure possible
 - Solely dependent on temperature
 - Exponentially increases with temperature
 - Absolute Humidity - Density of water vapor in g/m³
 - Changes as air volume changes
 - Not readily used in meteorology
 - Specific Humidity - mass of water vapor per mass of air in g/kg
 - Does not vary with air volume changes
 - Not widely recognized by public
 - Saturation specific humidity – maximum mass of water vapor for a given temperature
 - __________ – mass of water vapor relative to mass of dry air
 - Does not vary with air volume changes
 - Does not change with temperature
 - Saturation mixing ratio
 - __________ – amount of water vapor present related to the amount air can hold
– Given as a percentage
– RH = SH / C

• Highest RH occurs during the coolest times
• Lowest RH occurs during time of greatest air temperature
• A hot humid day results in a low relative humidity value, making this a poor indicator of actual humidity
– Cannot be used to compare moisture content at different locations with different temperatures

• **Dew Point** -

 • **Dew point depression** – difference between temperature and dew point
 – Smaller difference equals more saturated air therefore more likely clouds and precipitation are occurring

• Used to forecast the minimum temperature

• **Frost Point** – temperature where saturation point is below freezing

• Distribution of Water Vapor
 – Moisture in increased by
 • Evaporation
 • Advection
 – __________________ = major source of precipitation for the eastern half of the United States

• **Effect of Curvature on moisture**
 – Small drops exhibit greater curvature than larger drops
 • Influences saturation vapor pressure
 • Small droplets require higher RH’s to remain liquid
 • *Supersaturation* may occur

• **Effect of Solution on moisture**
 – Aerosols dissolve in water creating solutions
 • Opposes curvature and lowers the RH needed to remain liquid
 • __________________ – condensation nuclei that readily attract water (salt)

 • Natural (salt, dust, ash, etc.) and anthropogenic (combustion derivative) sources

• **Ice Nuclei**
 – Atmospheric water does not freeze at 0°C (32°F)
 – Leads to *supercooled* water (0°C and -4°C)
 – Between -10°C and -40°C contains a mixture of liquid drops and ice nuclei
 – At or below -40°C (-40°F) = *spontaneous nucleation*

• **Measuring Humidity**

 • Two thermometers to measure wet and dry bulb temperatures
 • Wet bulb depression – difference between dry and wet bulb
– *Aspirated psychrometer*
 • Uses a fan for air flow instead of slinging the instrument

– Uses hair expansion and contraction to measure humidity
 • Hygrothermograph produces a continuous record of humidity

• Human Discomfort Index
 – *Heat index* - Combines heat and humidity factors to determine an apparent temperature
 – High humidity reduces evaporation reducing the cooling power of perspiration

• Cooling Air to the Dew or Frost Point
 – *Diabatic processes*
 • The direct addition or removal of heat energy
 • The *Second Law of Thermodynamics*
 – Energy transfers from areas of high temperature to areas of lower temperature
 • Usually only produces fog

• Adiabatic Processes
 –
 • Rising air will expand and cool adiabatically
 • Sinking air will compress and warm adiabatically
 – *Dry adiabatic lapse rate* (-5.5°F/1000ft)
 • Lapse rate in dry air
 – *Saturated adiabatic lapse rate* (-3.3°F/1000ft)

• Overall decrease in air temperature with height
 – Changes diurnally from place to place
 – When temperatures decrease rapidly with height this establishes a steep ELR
 • Creates unstable air and can assist with storm development

Forms of Condensation

• *Dew*
 – Liquid condensation on surface objects
 – Occurs on clear windless nights

• *Frost*
 –
 • Directly from gaseous water vapor to solid ice crystals

• *Frozen Dew*
 – Dew formation followed by a temperature drop
 – Creates a tight surface bond making it difficult to remove

• *Fog* –
– *Precipitation fog*
 - Evaporation of falling rain drops
 - Water evaporates off a hot road
– *Steam fog*
 - Warm and cold air mixing
 - Cold air over warmer water
 - Your breath on a cold day
– *Radiation Fog*
 - At night, ground cools radiatively and cold air sinks to the lowest levels (“valley fog”)
 - Clear cool nights with light winds
– *Advection Fog*
 - Warm, moist air moving over cool surface
 - Warm spring air over cold snow surface
– *Upslope Fog*
 - Adiabatic process from upslope advection

Formation and Dissipation of Cloud Droplets
– Clouds formed through adiabatic cooling of rising air
– 50 m above the LCL all condensation nuclei are used
– Additional growth occurs instead of new drop formation

End of Chapter 5