Chapter 2.
Solar Radiation and the Seasons

Energy
• Solar Radiation
 – Creates atmospheric motions and weather processes

• 2 Energy Classifications
 – _____ - energy in motion. Described as energy in use.
 – Potential – energy stored. Described as energy that hasn’t yet been used.

Energy Transfer Mechanisms
• All objects emit energy

• Energy transfer through direct contact
 • Heating a metal rod causes energy to move from hot end to the colder end
 • Metals are good conductors
 • Air is a poor conductor
 • Ineffective in affecting weather processes

Energy Transfer Mechanisms
• Convection
 – Energy transfer through gases or liquids without physical contact
 – Bubbles rise in a pan of boiling water by conduction
 – Extremely effective in creating weather phenomena

Energy Transfer Mechanisms
• Radiation
 – No physical medium required for transmission
 – The Sun is the driving force for all weather processes
 – All energy is electromagnetic
 – Travels in a wave-like pattern

• Radiation
 – Electric waves and magnetic waves travel perpendicular to one another

 – Radiation quantity and quality
 • amplitude - the wave height which determines the amount of energy
 • wavelength - determined by the length of the wave which identifies the type of energy
 – measured in microns (____)
 – Types of radiation
 • Gamma rays, X-rays, ultraviolet (UV), visible, infrared (IR), and radio waves

• Radiation Laws
 – Physical laws define the amount and wavelength of emitted energy
 – Stefan-Boltzmann Law
 •
• E =
• E =
 – Stefan-Boltzmann Law
 • Blackbodies emit the maximum amount of energy
 • Graybodies emit a percentage of the maximum possible for a temperature
 • Emissivity (ε) – the percentage of energy emission of a substance as compared to a blackbody
 – ________________
 • Determines peak wavelength
 • _______ = 2900/T
 • Sun = _______ (___________ energy)
 • Earth = _______ (___________ energy)
 • Helps determine cloud heights from IR satellites
• The Solar Constant
 – The average amount of energy received from the Sun by the Earth
 • Solar constant = 1367 W/m²
 – Energy intensity decreases in proportion to the distance squared (Inverse square law)
 – Insolation –
• Earth’s Seasons
 – Earth’s rotation axis is tilted ______________ (inclination axis)
 – As the Earth travels around the sun the orientation of Earth to Sun constantly changes
 – 4 seasons
 • Winter Solstice
 • Vernal Equinox
 • Summer Solstice
 • Autumnal Equinox
• Earth’s Seasons
 – Rotation –
 • Takes 24 hours (23h 56’ 4”)
 • Causes day and night
 • North star (Polaris) directly above North Pole
 – ______________ – Earth in orbit around the Sun
 • Takes 365.25 days
 • Travels on a flat plane called ecliptic plane
 • Perihelion – Earth closest to Sun (Jan. 3)
 • Aphelion – Earth farthest from Sun (July 3)
• Winter Solstice
 – December 21st – 22nd
– **Subsolar point** – location on the Earth where the Sun’s rays are directly overhead at 90°
 • Tropic of Capricorn (23.5°S)
 – Southern hemisphere receives more energy
 – Short days and long nights

•
 – June 21st – June 22nd
 – Earth’s axis is tilted towards the Sun
 – Subsolar point = 23.5°N
 • Tropic of Cancer
 – Northern hemisphere receives more energy
 – Long days and short nights

• **Vernal Equinox**
 – March 21st – 22nd
 – Earth is not tilted towards or away from Sun
 – Subsolar point = 0° (Equator)

• **Autumnal Equinox**
 – September 22nd – 23rd
 – Subsolar point = 0° (Equator)
 – Every location receives 12 hours of daylight

• **Receipt of Incoming Solar Energy**
 – Length of daylight
 • __________ always receives 12 hours daylight
 • Arctic circle 66.5°N
 • Antarctic circle 66.5°N
 • Locations north of Arctic circle and south of the Antarctic circle sometimes receive 24 hours daylight and darkness

• **Receipt of Incoming Solar Energy**
 – **Solar angle** – angle of sun above horizon
 • More energy with higher Sun angles due to less beam spreading
 • **Angle of incidence** – angle at which Sun’s rays hit the surface

• **Receipt of Incoming Solar Energy**
 – __________ – latitude of the subsolar point
 • Winter Solstice = _______ (Tropic of Capricorn)
 • Summer Solstice = _______ (Tropic of Cancer)
 • Vernal Equinox = _____ (Equator)
 • Autumnnal Equinox = ____ (Equator)
 – Noon sun angle (NSA) – angle of noon Sun above the horizon

• NSA = 90° – (latitudinal degrees between observer and solar declination)

Receipt of Incoming Solar Energy
– Atmospheric Beam Depletion – amount of atmosphere Sun’s rays have to travel through
 • Explains why you can look at the Sun during sunset or sunrise
 • Sun is most intense at noontime